Unreal 2 AI Scripting

Table of Contents

Overview
Getting Started
An Example Script
List of Events
Command Targets
List of Commands
Useful Properties

 HYPERLINK \l "_When_Things_Go"

When Things Go Wrong

Developer Info
Miscellaneous
TBD Stuff
Red Text = TBD/TBI/Not Yet Implemented

Overview

(tbd: complete, review)

By default, Unreal 2 NPCs are autonomous – that is, they respond to incoming events and make their own decision about how to react to these events. For example, an NPC receives a “you saw the player” or “you heard a noise” message and decides to attack the player of investigate the noise. When autonomous, the NPC makes all decisions about where to go what to do based on what it knows about its “environment” (e.g. Which weapon should I be using? Can I shoot a rocket at the enemy, or is there a ledge in the way?) and can respond to further incoming events according to the code that it is using. For example, if an NPC loses sight of his enemy (because the enemy ran around a corner), the NPC might switch from an attacking state to a searching state and eventually (if the enemy isn’t found) to a roaming state. If an NPC’s health falls below a certain level, it might decide to run away from the enemy. These are all decisions that the base AI code makes independently and automatically.

Alternatively, Unreal 2 NPCs can operate under “script control” by associating them with an AI script. An AI script is a text file which contains specific commands which can be used to setup the NPC and to tell the NPC where to go and what to do. A typical script might give the controlled NPC a rocket launcher and put him on a patrol which causes him to move along a set path. When the NPC sees an enemy, the script might contain commands which direct him to run to a specific area in the level and press an alarm button. Some of the other things that scripts can be used for include

· forcing an NPC to ignore enemies unless he takes damage

· having the NPC head to a specific area when an explosion (trigger) occurs

· having the NPC play a specific animation

· telling the NPC to crawl or crouch

· killing the NPC when he reaches a particular location

· causing the NPC to fire a specific weapon at a specific target

· telling the NPC that he should act “alert”

· telling the NPC to wait where he is until he sees the player

Unreal 2 uses scripts in singleplayer to set up complex scenarios that could be extremely hard to implement and control using autonomous AI code. For example, a squad of marines can be scripted to maintain a particular formation and to use specific animations. Once the squad sees an enemy, they might split into 2 smaller squads which are told to hold their formation until they take damage, at which point they will attack the enemy. In many cases, the end result will look much better than anything that could be achieved using code to carry this out autonomously.

AI scripts can also be used in conjunction with the Unreal 2’s dialog system to specify dialogs that an NPC should initiate (e.g. “find the player and play the “we’re under attack” dialog”) and to handle any “commands” issued by the dialog system both in response to a choice made when a dialog session terminates (e.g. “go to the left tower”) or in response to mid-session directives from the dialog system (e.g. “go over to the console”).

Note that the AI scripting support is nothing like a “real” language in that it doesn’t support named variables and complex control statements and expressions as does UnrealScript, for example. The AI scripting support is basically a command interpreter which exposes the underlying AI functionality in a (hopefully) user-friendly manner with only limited support for storing/retrieving values and for implementing test and branch situations.

Also, AI scripts should be idle (e.g. sleeping or handling a gotoactor etc.) as much of the time as possible since script commands are generally “interpreted” at the time that they are executed. Although some pre-processing is done, e.g. to store the command “op codes”, there is potentially a lot of overhead associated with executing script commands. A script which puts an NPC on some patrol, while occasionally playing random chat is fine, a script which checks for all PathNodes within 8192 units every 0.2 seconds will probably impact the game’s framerate noticeably. Generally, the kinds of things that are computationally expensive should be handled “autonomously” – let the NPC go off his script to fight enemies, for example. If you find yourself writing complex scripts, you should ask yourself whether the situation could be better handled in UnrealScript, perhaps with a new command to hook into the new functionality.

Getting Started
NPCs which are not assigned a script file are under “autonomous” control and will use their default behavior to respond to events etc.

An NPC which is under script control will be controlled to at least some extent by the commands in the associated script file (e.g. to make it patrol, animate, disable events etc.) until (if) the script decides to detach itself from the NPC.

There are 2 ways to set up the NPC for “script control”.

Important

The ScriptPath property in unreal.ini identifies the location of the main script directory This defaults to “..\Scripts” for Unreal2.

Similarly, the ScriptExt property specifies the default extension for script files. This is set to “u2s” for Unreal2.

Unreal2 levels have a MapName property in their LevelInfo. Unreal2 will look for AI scripts in ScriptPath\MapName\CommandFileName.ScriptExt. So, for a level with the MapName Foo, scripts should be in ..\Scripts\Foo*.u2s.

However, if the CommandFileName contains a path (at least one \), Unreal2 will look in ScriptPath\CommandFileName. So, if the CommandFileName is MyStuff\Test1, the script commands should be located in ..\Scripts\MyStuff\Test1.u2s.

Finally, if MapName is none for a level, the “MapName” currently defaults to “Test”. So if an NPC is given a CommandFileName of Patrol1, with no MapName specified in the level’s level info, the file should be in ..\Scripts\Test\Patrol1.u2s.

Setting up an NPC for Scripting

Method #1

Generally, you will probably want to directly set the NPC’s CommandFileName property to the name of the script file to use.

When NPCs are spawned into a level sometime after it starts (i.e. using a PawnFactory, the PawnFactory needs specify the CommandFileName to pass onto the spawned NPC where applicable).

Method #2

Alternatively, it is possible to create your own ScriptController subclass. You can tell NPCs to use your subclass instead of the default ScriptControllerInterf (not scripted) and ScriptController (scripted) classes by setting its ScriptedScriptControllerClass property to the name of your new class. You can then follow the steps described above to set the NPCs CommandFileName to the name of the file that should be used.

You would do this if you needed to override or supplement the base functionality in ScriptController.uc, e.g. to extend or modify the base scripting support. Hopefully it will be possible to handle the majority of scripting requirements using Method #1.

General Info

· Scripts always executed until they reach a command which tells them to stop (e.g. stop, eventwait, sleep etc.).

· Scripts should only execute very infrequently (much less often than UnrealScript code) but lengthy sequences of commands should still be avoided as much as possible. Try to perform any one-time initialization, such as assigning inventory items when the script starts rather than in code which will execute at a later point in the game.

· Script commands should always be in lower-case.

· Target names (actor names, properties etc.) are case-insensitive.

· Labels can consist of alphanumeric characters (a..z, A..Z, 0..9) and the underscore (_) character.

· Scripts which execute past the last command are not currently treated as errors -- the script controller will be released but the NPC will stay in the scripted state until he reacts to something (taking damage, seeing an enemy).

· If you kill an NPC which is under script control, the script controller should be released as soon as the NPC dies. Also any saved (pushed) scripted state will be cleared).

· Saving/restoring (pushing/popping) scripted control is disabled for now until we work out the rules in more detail

Using Comments
The following are valid comments:

// this is a single-line comment

gotoactor pathnode12 // this is a comment

/*

this is a multi-line comment

*/

/* This is a valid comment */

/* This is

valid too */

gotoactor /*this is ok too*/ pathnode12

Multi-line (/* */) comments can be nested.

Blank lines are ignored.

Special Names

Note: for actor arguments use “pawn”, “controller” and “self” (no quotes) to refer to the controlled NPC’s Pawn actor, the controller NPC’s Controller actor and the script controller respectively. “player” = player

e.g. to test the NPC’s health, do something like

testproperty pawn health 30 gotolabel foo

An Example Script

The following example illustrates some of the things that scripts can be used for. This script was given to an NPC which was placed in a level containing 3 triggers. The NPC is initially “idle”, crouching and holding a flamethrower. The NPC will only react to one of the triggers in the level and won’t react to seeing other Pawns or to hearing noise etc.. When the trigger with the event “gotomiddle” is touched, the NPC sets up code to handle any of the 3 triggers in the level and heads towards a pathnode which is near that trigger. After 4 trigger events have been handled, the NPC enables reacting to sensory input and will attack the player when he is seen. If the player is walking, the rocketlauncher will be used, if he is flying (e.g. typed “fly”), the flamethrower will be used.

//---

// setup

//---

inert 1

// disable reacting to "sensory input"

animloop DuckIdle_Fr01

// loop some idle duck animation

// make sure only has RL and FT

removeinventory

// removes all inventory

setweapon u2weapons.weaponinvrocketlauncher

// put rocketlauncher into NPC's hands

setweapon u2weapons.weaponinvflamethrower

// put flamethrower into NPC's hands

// wait

eventwait trigger gotomiddle

// wait until a "gotomiddle" trigger comes in

call setupontriggers

// call subroutine to handle received trigger

gotolabel handlegotomiddleinitial

// jump to given label

//---

// generic idle loop

//---

:loopidle

// a label

animloop DuckIdle_Fr01

// loop some idle duck animation

sleep

// go to sleep (event will "wake up" controller

//---

// trigger handlers

//---

:handlegotomiddleinitial

// initial middle trigger handler

call countit

// keep track of number of handled triggers

gotoactor pathnode18

// send NPC to pathnode18 (wait until reached)

gotolabel loopidle

// when pathnode reached, jump to given label

:handlegotomiddle

// middle trigger handler

call countit

gotoactor pathnode18

gotolabel loopidle

:handlegotoright

// right trigger handler

call countit

gotoactor pathnode16

gotolabel loopidle

:handlegotoleft

// left trigger handler

call countit

gotoactor pathnode20

gotolabel loopidle

:setupontriggers

// "subroutine" -- sets up various triggers

ontrigger gotoright gotolabel handlegotoright
// gotoright trigger will jump given label

ontrigger gotoleft gotolabel handlegotoleft

// gotoleft trigger will jump given label

ontrigger gotomiddle gotolabel handlegotomiddle
// gotomiddle trigger will jump given label

return

//---

// misc

//---

:countit

// "subroutine" for counting handled triggers

incproperty self int1

// increment int1 scratch variable

testpropertyle self int1 4

// is count <= 4?

gotolabel doreturn

// yes ==> jump to return lable and carry on

callend

// no ==> won't return -- clear "call stack"

gotolabel hitlimit

// jump to given label

:doreturn

return

// return to caller

:hitlimit

eventenable seeplayer

// enable seeing player

onevent seeplayer gotolabel firstseeplayer

// associate handler with seeplayer event

sleep

// stop processing commands

//---

// react to player

//---

:firstseeplayer

clearevents

// clear all event handlers

cleartriggers

// clear all trigger handlers

playsound npc U2AI.UnderAttack slot_talk

// play "underattack" sound

teststate player playerwalking

// if player is walking use rocketlauncher

gotolabel useRL

:useFT

// use flamethrower

removeinventory u2weapons.weaponinvrocketlauncher
// remove rocketlauncher from inventory

setweapon u2weapons.weaponinvflamethrower

// make sure flamethrower being used

gotolabel allyourbasearebelongtous

// jump to given label

:useRL

// use rocketlauncher

removeinventory u2weapons.weaponinvflamethrower

// remove flamethrower from inventory

setweapon u2weapons.weaponinvrocketlauncher

// make sure rocketlauncher being used

gotolabel allyourbasearebelongtous

// jump to given label

:allyourbasearebelongtous

inert 0

// enable reacting to "sensory input"

gotoactor player

// send NPC to the player's location

stop

// terminate the script

List of Events

Any of the following events can be used with the various commands which work with events (eventenable, eventwait etc.). If an event is flagges as “canwait”, it is possible to wait for the event with eventwait, if an event is flagged with “cantoggle”, the event can be enabled/disabled with eventdisable/eventenable etc.

“sensory” events

These events are generated when NPCs “detect” something in their environment which will generally cause them to react in some way (acquire an enemy, acknowledge a friend, run away etc.)

event

canwait
cantoggle

ActorInRange

Tracked actor came in range

Y
Y

ActorOutOfRange
Tracked actor went out of range

Y
Y

BumpEnemy

NPC was bumped by an enemy

Y
Y

BumpFriend

NPC was bumped by a friend

Y
Y

BumpOther

NPC was bumped by other

Y
Y

BumpPlayer

NPC was bumped by the player

Y
Y

EnemyNotVisible
Current enemy is no longer visible

N
Y

HearNoiseFriendly
NPC hears a noise from a friendly source
Y
Y

HearNoiseOther

NPC hears a noise from other sources
Y
Y

HearNoiseThreat

NPC hears a noise from a potential enemy
Y
Y

SeeEnemy

NPC sees an enemy player or NPC

Y
Y

SeeFriend

NPC sees a friendly player or NPC

Y
Y

SeeOther

NPC sees other (e.g. carcass?)

Y
Y

SeePlayer

NPC sees the player

Y
Y

TookDamage

NPC took damage

Y
Y

TookDamageEnemy
NPC took damage from an enemy

Y
N

TookDamageFriend
NPC took damage from an enemy

Y
N

Note: SeePlayer isn’t a “real” AI event but it can be treated much like one. The AI receives “See” events from the engine and these are “translated” into SeeEnemy/Friend/Other events. These are the events which are passed to the NPC’s script controller and, if these aren’t disabled, back to the controlled NPC so the NPC can react to them.

When SeeEnemy / SeeFriend events are received by the ScriptController and the seen Pawn is a (real) player, a SeePlayer event is generated internally in the ScriptController. If SeePlayer is enabled, SeeEnemy/SeeFriend events will be passed to the NPC, otherwise these will be filtered. This makes it possible to set up NPCs which will react to

// all enemies (default)

eventenable seeplayer

eventenable seeenemy

// just the player

eventdisable seeenemy

// just other enemies

eventdisable seeplayer

and the same idea applies to friendly players/NPCs.

The main gotcha is that if there is a SeePlayer handler, this will handle SeePlayer events as expected, but if there is no such handler, the SeeEnemy/SeeFriend handler will be used if these exist.

This means that with the following:

onevent seeenemy gotolabel enemysighted

any enemy, whether or not this is the player will cause the script to jump to the enemysighted label wheras:

onevent seeplayer gotolabel playersighted

onevent seeenemy gotolabel enemysighted

onevent seefriend gotolabel friendsighted

will send seeplayer events (friendly or enemy) to playersighted, enemies to enemysighted and friends to friendsighted. There is currently no support for identifying events from players which are enemies/friends (could pbly support this in some way if this could be useful).

Similarly, scripts which are waiting for a SeeEnemy/SeeFriend event will also respond to SeePlayer events.

Things are pretty much the same for BumpEnemy/Friend/Other/Player with BumpPlayer being an internally generated event handle in the same way as SeePlayer.

TookDamage events will only occur if TakeDamage events (see below) aren’t filtered.

Note that enabling/disabling any of the bump events (bumpenemy/friend/other/player) won’t affect the ability of an NPC to get out of the way of other Pawns if they are bumped by them under applicable conditions. Currently NPCs will only get out of the way of the player (by moving left/right/back etc.) and only if they are friendly to the player AND currently under script control AND their current or previous destination was the player (gotoactor player). Its currently assumed that if an NPC is sent to a non-player destination then the script will ensure that the player can’t be blocked at that destination (or won’t be blocked for long enough to matter).

other events

These are non-sensory events which NPCs don’t generally react to in any direct manner.

event

canwait
cantoggle

AnimEnd

end of animation

N
N

DestinationReached
NPC reached current (final) destination
Y
Y

DialogBegin

Someone initiated dialog with NPC

Y
N

Died

NPC died

Y
N

ScriptedLanding

NPC landed while in the scripted state
Y
N

TakeDamage

NPC is about to take damage

Y
Y

AutoBegin

NPC exiting scripted state

N
Y

AutoEnd

NPC is entering scripted state

N
N

If TakeDamage is filtered, NPCs are basically invulnerable and will be completely unaware of taking damage (TookDamage events will never be generated). This is probably only useful in limited situations, when a script needs to guarantee that an NPC won’t be killed for example, although a similar way to achieve this would be to increase the NPC’s health temporarily and this will allow the NPC to continue to receive TookDamage events.

AutoBegin and AutoEnd can be used to control behavior related to entering and exiting autonomous mode.

An AutoBegin event is generated when the NPC is about to “go autonomous”, e.g. to attack an enemy. This event can be disabled if desired and doing this has a similar effect to “inert 1” – the NPC will be completely unresponsive to events which would normally make him go off of his script.

An AutoEnd event is generated when the NPC is about to go back to scripted mode, e.g. if the enemy was killed or the NPC lost sight of his enemy. AutoEnd will only be generated if the NPC still has an active script.

AutoBegin and AutoEnd can have handlers (gotolabel xxx) associated with them to perform various tasks associated with entering and leaving autonomous mode. For example, a script might typically use an AutoBegin handler to restore the NPC’s stance (e.g. make him stand up), disable event handlers and timers (so the script doesn’t interupt the autonomous behavior) and put the script to sleep (so it is no longer executing any code). The script might also execute a “stop” command which will cause the script to be detached. An AutoEnd handler is typically used to restore the desired scripted stance and movespeed etc., along with any event handlers and timers and to put the NPC back onto a patrol using the “resumepatrol” command.

Note that if an AutoBegin event occurs and there is no AutoBegin handler (no active “onevent autobegin gotolabel xxx” code), the script will be detached by default (and the NPC’s stance will be set to standing).

Scripts which are not detached while an NPC executes autonomous behavior can still be active, e.g. they can have event handlers and/or timers and these will be executed in the usual manner. Care must be taken that the script and the autonomous behavior don’t “fight” each other. e.g., having the script iterating a patrol while the NPC is trying to attack an enemy would be a bad idea. Eventually, we will probably want a script command to force an NPC back to scripted mode.

Example:

// Test autobegin stuff:

//

//
Case 1: autobegin disabled (ignores any input even though not inert)

//
Case 2: autobegin causes script to stop (should attack enemy if any)

//
Case 3: autobegin causes script to sleep (resumes patrol with autoend)

removeinventory

setweapon u2weapons.weaponinvassaultrifle

//debugmode 0

//debugaievents 1

debugaiflags 240

setstance crouching

inert 0

// enable only one of the following:

//call autobegindisabled

//call autobeginstop

call autobeginsleep

gotolabel beginpatrol_1

:autobegindisabled

eventdisable autobegin

return

:autobeginstop

onevent autobegin gotolabel scriptstop

return

:autobeginsleep

onevent autobegin gotolabel scriptsleep

return

:beginpatrol_1

gotoactor pathnode9

gotoactor pathnode39

gotoactor pathnode38

gotoactor pathnode33

gotoactor pathnode5

gotolabel beginpatrol_1

:endpatrol_1

:resumepatrol1

resumepatrol beginpatrol_1 endpatrol_1 best

:scriptstop

setstance standing

stop

:scriptsleep

// leave him crouched

onevent autoend gotolabel resumepatrol1

sleep

Command Targets

Some commands take one or more targets as parameters. Generally this is the name of an actor which is in the level (e.g. gotoactor pathnode32) but there are a number of “special” target names which can be used:

controller

// the controlled NPC's controller

eventinstigator

// instigator for most recent event (if applicable)

eventother

// other for most recent event (if applicable)

found

// actor found in previous call to FindActor

pawn

// the controlled NPC's pawn

player

// the player

self

// the scriptcontroller (mainly for accessing scratch variables)

List of Commands

Note that latent AI script commands are commands which cause command processing to stop, either until the command completes (e.g. gotoactor) or until some event occurs which causes execution to resume elsewhere in the script. Event handling (NPC events or internal events such as those set up through the onevent, ontimer or ontrigger commands) only occur while the script is handling latent calls (e.g. when a script executes “sleep” it is no longer executing any commands which allows such events to be handled).

Commands which are always latent are indicated with “latent” below, commands which are possibly latent depending on the circumstances/parameters are indicated with “[latent]”.

Name

Parameters

[Latent]

addammo

ammostring amount [maxclip]

Can be used to add/remove the given amount of thhe given type of ammo. If maxclip=1, then makes sure that the clip is as full as possible.

e.g.

addammo u2weapons.ammoinvheavyrockets 10

addammo u2weapons.ammoinvheavyrockets –5

See also setammo.

animloop

name [rate [tweentime [wait]]]

[latent]

animplay

name [rate [tweentime [wait]]]

[latent]

animtween

name [tweentime [wait]]

[latent]

Used to loop/, play or tween speficied animations

name (name)

Name of animation, tries to use this as a slot name first, the tries to use this as a base name then tries to treat this as a raw name (see: ..\Animations\U2Animations.doc for a list of slots/base names.

rate (float)

Specifies the rate at which animation should play (default is 1.0).

tweentime (float)

float -- time to tween to new animation

wait (int)

0: continue executing script commands, 1: wait until anim ends (latent).

Example:

e.g. to get an NPC to loop an idle duck walk animation, any of

animloop DuckIdle_Fr

animloop DuckIdle_Fr01

animloop DuckIdle_Fr01_LG

should work.

The first example is the most general way in which to specify an animation. By specifying a slot in this way, you allow the animation code to scan the available animations for any available DuckIdle_Fr animation, and one of these will be selected randomly (based on the information in the animation table data (.atd) file which controls the odds that an animation will be selected and how long it should play for etc.

The extensions that we are currently using for weapons are:

 _SM:
small (e.g. pistol)

 _SS:
small swing (e.g. stun baton)

 _LG:
large weapon (e.g. assault rifle)

 _SH:
shoulder-positioned weapon (e.g. RL)

 _FT:
flamethrower

 _NW:
no weapon held

The second example uses a base name without specifying the weapon. The animation code will pick a suitable raw animation based on the weapon that the NPC is carrying, its health, and whether it is alert.

The third example specifies a raw animation name – as long as this animation exists in the NPC’s animation data it will be played, without checking the NPC’s health, alertness or the weapon that is being held.

Note:

Animation names are not case-sensitive, so capitalization is optional.

Some of the animation names are a bit lengthy unfortunately due to the way in which we’ve organized these, e.g. idlewaitbreathe…

When using animloop, you must use animrelease when you wish to restore animation control back to the animation controller (the code that normally maintains character animations). With animtween and animplay, the animation controller will take over as soon as the tween/play is done so you don’t have to worry about this.
animrelease
When using animloop, you must use animrelease when you wish to restore animation control back to the animation controller (the code that normally maintains character animations). If you don’t do this and the NPC moves (for example), the normaly movement animations won’t play.

With animtween and animplay, the animation controller will take over as soon as the tween/play is done so you don’t have to worry about this. For example, you can send an NPC to a particular destination and use animplay to have him wave. After waving, the normaly idle/movement animations will resume.
call

label
Saves the current location and jumps to the given label. When a “return” is executed execution will resume at the saved location.

callend
If called code isn’t going to return to the caller use this to clear the saved return locations or, when script execution ends (stop command or controller dettached), a call/return mismatch error will be reported.

clearevents

Clears any existing onevents.

cleartimers

Removes all timers. See also ontimer command.

cleartriggers

Clears any existing ontrigger xxx events.

consolecommand
command

Executes the given console command, e.g.

consolecommand “killall u2araknidlight”

consolecommand “paths show”

etc.

debugai

0 | 1

Toggles AI debug mode in NPC (e.g. will log and show AI info an show waypoints and

destination while patrolling).

debugaievents

0 | 1

Toggles event (AnimEnd SeePlayer etc.) logging/display (also logs/shows whether event enabled)

debugaiflags

#

Sets debug AI flags in controlled NPC to #. The following flags can be used/combined:

Debug_None

= 0x00;

Debug_AnimPawn

= 0x01;

Debug_AnimHandler

= 0x02;

Debug_AnimTable

= 0x04;

Debug_AI

= 0x10;

Debug_AIEvents

= 0x20;

Debug_AIWeapon

= 0x40;

Debug_AIMovement

= 0x80;

debugmode

flags

Sets script debug mode.

0:
no debug info (default)

1:
show internal debug info

2:
dump commands and log executed commands

4:
dump event info

8:
dump control flow info (gotolabel, call, onevent etc.)

The flags can be combined, e.g.:

3:
= 1 + 2 (
11:
= everything except events

15:
= everything

Logged information goes to the screen and to the log file.

The debugmode can also be set (for all scripts/NPCs in the level) through unreal.ini in the [U2AI.ScriptController] section (see default.ini for examples).

You should also be able to do something like

setproperty controller bShowMoveTargets true/false

to enable/disable showing the destinations for NPCs during movement.
decproperty

targetname propertyname propertyvalue

Decrements the given (integer) property (use self for controller, npc for controlled NPC).

deployinventory

inventorystring [1]

The NPC will deploy the given inventory item at the current location if possible. An error is generated if the item can’t be located / created. Use “1” after the inventory string to cause the item to be “alt” deployed.

e.g.

deployinventory u2xmp.fieldgeneratordeployable 1

will “alt” deploy a field generator (2-link generator).

destroy

Destroys the controlled NPC (no corpse, nada).

dialoginitiate

speakerstring dialogname

Attempts to initiate named dialog (DialogName) between the NPC and the target actor with this speaker property (SpeakerString). The Target can be any actor, including the player (use player as the SpeakerString).

directionalpatrol
0 | 1

Toggles NPC aligning himself with destination orientation. This only applies to destinations which have bDirectional=true.

dormant

0 | 1

Makes the NPC dormant. This sets bStasis on both the Pawn and the AIController for the controlled NPC and sets the physics on the Pawn to PHYS_None. No events which are generated at the engine level (e.g. Bump, SeePlayer etc.) will be passed to the NPC and events which are generated in script code (e.g. TakeDamage) will be filtered out by the ScriptController. This pretty much “shuts down” the NPC. Do this to make sure the NPC can’t react to anything at all and for performance reasons (e.g. use dormant 1 on NPCs until the player is close by).

When an NPC is dormant, currently the only way to wake it up is through its script. At some point it is likely that we will also have some minimal code which checks for situations in which the NPC should be woken up, e.g., in case the player is able to circumvent the triggers which should wake up the NPC.

dropinventory

inventorystring

The NPC will drop the given inventory item at the current location if possible. An error is generated if the item can’t be located / created.

dropinventory u2weapons.ammoinvrocketlauncher

enableprobeevent
probename 0 | 1

Enables/disables the given NPC probe event (for performance) e.g. enableprobeevent seeplayer 0 -> no more seeplayer events. Hasn’t been used/tested much so far…

enablexmphandling
0 | 1
Enables/disables NPC reacting to XMP items (inert 0/1 sets this to 1/0 use enablexmphandling 0/1 to override this). In levels which can contain XMP items which aren’t “friendly” to the NPC, if you use “inert 1” you probably MUST use “enablexmphandling 1” to make sure that the NPC can go autonomous to attack and destroy any XMP items which get in the way of the NPC. You will also probably want to use autobegin/end handlers to make sure that the NPC goes back to his script (since presumably the intent behind using “inert 1” was to keep the NPC on his script).

eventdisable

eventname

Disables the named event so that the controlled NPC will no longer receive these. Events which are disabled can still be handled by the script controller though, e.g. using onevent.

See the Events section for a list of supported events.

eventenable

eventname

enables given event

For example,

eventdisable seeplayer

will prevent “seeplayer” events from reaching the NPC – the NPC will ignore the player until this event is enabled, or until the player is “acquired” by another means, e.g. because the NPC “hears” the player.

See the Events section for a list of supported events.

eventwait

eventname

latent
Stops execution of the script at the current line until the given event is received.

See the Events section for a list of supported events.

findactor
[TargetName [Min [Max [DistanceType [VisibilityType [Num [gotolabel/call targetlabel]]]]]]]

Looks for actors in the level within a specified distance of the controlled NPC and (optionally) filters out actors which aren’t visible to the NPC within a specified distance. Matching actors are placed within a list and can be used with any command which refers to actors by name (e.g. gotoactor, turntoactor , testproperty etc.) by specifying ‘found’ (no quotes) as the target name for those commands.

TargetName:
if ends in digits looks for matching object name, otherwise look for matching class names

Min:

min distance to consider (0)

Max:

max distance to consider (1024)

DistanceType:
0=pick first, 1=pick closest, 2=pick farthest, 3=pick all matching (0)

VisibilityType:
if 0, ignore visibility, if 1, make sure target visible, if 2, use NPC’s fov (0)

Num:

when using DistanceType=3, can be used to limit number of matches to less than 10 (10)

Note that if VisibilityType is 2, there is an element of randomness used to determine whether the NPC can see the target whereas with VisibilityType=1, whether a candidate actor is visible depends only on its distance from the source Pawn. A non-random fov check could be added if this becomes necessary (e.g. if we have situations where we want to use the Pawn’s FOV but be 100% sure that any appropriate actor within the NPC’s FOV (PeripheralVision + SightRadius) will be seen.

Targets are stored internally. When ‘found’ is used as the target actor for gotoactor etc. these commands will refer to the most recently found actor in the list. If there is more than 1 actor in the list (DistanceType=3 was used), a target will be randomly selected from the list then made the only actor in the list so that subsequent commands using ‘found’ will use the same actor.

If any actors are found, and a gotolabel/call was specified, the script will jump to or call the commands at the label “targetlabel”, otherwise the line following the findactor command will be the next one executed.

Use findactor with no parameters to clear the found actor list.

Be careful when using a specific TargetName (one that ends in digits). The search will not be allowed to succeed if the found actor isn’t one that was placed in the editor because otherwise there is no guarantee that the name won’t change depending on the order in which actors are spawned in-game (e.g. if the level is restarted). Even when an actor is placed in the editor, using a specific name can obviously break if the actor’s name changes, e.g. if it is deleted and replaced. Whenever possible, a non-specific (class) name should be used (along with appropriate distance and visibility filters etc. where applicable).

e.g.

// look for “alarmtrigger” actors within 2048 units of NPC, pick closest one, must be in Pawns fov
findactor u2.alarmtrigger 0 2048 0 2 0 gotolabel attackit

// no alarmtrigger actor found – continue…

[…]

:attackit

gotoactor found

turntoactor found

findactor

//clear found actor

fire

etc.

fire

[x.x]

[latent]

firealt

[x.x]

[latent]

Fires or alt-fires the NPC’s current weapon (appropriate weapon firing animation should be played automatically) for the given duration.

If the given value is < 0, the weapon is fired once if it is a slow fire weapon (less than about 2 shots per second) and is fired for –x.x secs if it is a rapid fire weapon.

If these commands are issued before the NPC has completed turning towards the targetactor specified with turntoactor (or weaponaim – obsolete), the script will wait (latent) until the rotation completes, then carry out the fire/firealt command.

giveinventory

inventorystring
Puts inventory item “inventorystring” into the controlled NPC’s inventory.

giveitemtoplayer
inventorystring [ammocount]
Puts inventory item “inventorystring” into the player’s inventory. If ammocount is non-0, treats the inventory as ammo and adds the given ammount (ammocount) to the player’s inventory (up to the maximum allowed for that ammo type).

givetosseditem

inventorystring
Adds specified item to NPC’s list of items to toss upon dying. Error if list is full (currently 12 items max).

gotoactor

targetname MinDistance

latent
Sends NPC to specifed actor (e.g. PathNode112, U2PatrolPoint0 or player).

The given destination should be a fixed-location actor (e.g. navigation point) reachable (NPC can walk right to it) or pathable (NPC can figure out a path to it) from the NPC’s current location at the time that the command is executed

MinDistance can be used to allow the NPC to stop a bit short of the destination actor (usually NPCs will stop moving once the destination actor is at least partially in the NPC’s collision cylinder).

e.g.

gotoactor found 64.0

gotoactorsafe

targetname MinDistance

latent
This is a “safe” version of gotoactor – if the specified targetname isn’t found the script won’t report an error. This is mainly intended to be used with findactor if you aren’t sure whether there will be any matching actors and don’t want to set up branching to handle the 2 scenarios.

gotolabel

label
Jumps to line after line with given label.

Use

xxx:

to set up and

gotolabel xxx

to jump to the line immediately following that label.

handlergroup, handlergroupend

Used to associated any number of onevent, ontimer and ontrigger handlers with a common group. When any of these events occur, any handlers which belong to the same group will be cleared. This is useful for example when any of several triggers or a timer etc. might be used to “wake” a script and once this happens all of these triggers and/or timers should be disabled.

e.g.

handlergroup

ontrigger foo1 gotolabel blah1

ontrigger foo2 gotolabel blah2

ontimer 1 60.0 0.0 gotolabel timeup

handlergroupend

When any of foo1 or foo2 arrive or if 60 seconds is up, the foo1 and foo2 handlers and the timer will be removed. The code for actually handling these events doesn’t have to worry about these details.

headtracking

0 | 1

Disable / enable head tracking (automatic looking at actors / points of interest in the area).

incproperty

targetname propertyname propertyvalue
Increments the given (integer) property (use self for controller, npc for controlled NPC)

inert

0 | 1

Scripts can use the inert command to enable (0) or disable (1) all of the following events:

BumpEnemy

BumpFriend

BumpOther

BumpPlayerr

HearNoiseFriendly

HearNoiseOther

HearNoiseThreat

InheritEnemy

SeeAlertFriend

SeeEnemy

SeeFriend

SeeOther

SeePlayer

TookDamage

TookDamageEnemy

TookDamageFriend

With “inert 1”, none of these events are passed on to the NPC’s autonomous AI code so the NPC won’t respond to these events. Events can be enabled / disabled individually using the eventenable / eventenable commands.

Note that “inert 1” won’t affect the ability of an NPC to get out of the way of other Pawns if they are bumped by them if applicable (currently only scripted, friendly NPCs will get out of the way of the player).

jump

X Y Z
Set controlled NPC’s velocity using the given X/Y/Z, play the NPC’s jumping animation and set the NPC’s physics to PHYS_Falling. Can be used with FallingAddedAcceleration to have NPC “fall upwards”.

kill

Kills the controlled NPC (spawns a corpse).

killall

targetclass
Destroys all actors in the level which are a targetclass (including subclasses). Can not be used to destroy objects. Be careful using this!

e.g.

killall scripttrigger
// destroys all scripttriggers in the level

message

msg [0|1|2]
Displays the given message in-game. Use double quotes (”) around strings made up of more than one word separated by whitespace.

Can also specify a 2nd parameter:

0: send message to screen only (default)

1: send message to screen and log file

2: send message to log file only

onevent

eventname [[gotolabel | interrupt] label [clear]]
When event xxx occurs, execution resumes at the given label. If clear=1 (default = 0), clears the event handler once the event occurs.

If “interrupt” in place of “gotolabel”, the current line is saved, the script jumps to the given label, and proceeds until a “return” is reached. Then execution resumes at the saved label (causing the interrupted, latent command to be re-executed).

ontimer

index [initialfrequency repeatfrequency [gotolabel | interrupt] label]
Sets up timer for the given index (1 – 5). When initialfrequency seconds are up, control will jump to the specified label. If repeatfrequency is 0.0, the timer will be cleared (removed) when the time is up, otherwise it will be reset to occur again in repeatfrequency seconds. If nothing but the index parameter is given, corresponding timer will be cleared. Use cleartimers to disable all timers.

If “interrupt” in place of “gotolabel”, the current line is saved, the script jumps to the given label, and proceeds until a “return” is reached. Then execution resumes at the saved label (causing the interrupted, latent command to be re-executed).

e.g.

ontimer 1 60.0 0.0 gotolabel timeup

Note that you can not have a repeating timer inside of a handler group (see handlergroup/handlergroupend commands).

ontrigger eventname [[gotolabel | interrupt] label [clear [timelimit [[gotolabel | interrupt] label]]]]
Associates a label with a particular event (specified by eventname). e.g.

ontrigger explosion1 gotolabel handleexplosion1

will cause the code at the label “handleexplosion1” to be executed if/when the NPC is triggered with the ‘explosion1’ event.

Use “ontrigger eventname” with no additional arguments to disable the trigger handler, e.g.

ontrigger explosion1

disables the above trigger handler.

By default, trigger handlers will remain active after the triggerevent occurs and “ontrigger xxx” can be always be used (as shown above) to explicitely disable a trigger at any time. If a particular trigger is only meant to be used once, you can use clear =1 to have a trigger disable itself when the triggerevent arrives, e.g.:

ontrigger explosion1 gotolabel handleexplosion1 1

will automatically disable the explosion1 trigger handler once the explosion1 event arrives.

Code that waits for trigger events needs to be used carefully. If its possible that the event being waited for might never arrive (e.g. because a squad leader gets killed before he can direct his squad to follow), this situation probably needs to be dealt with. One way of handling this is to set up a separate ontimer which will kick in if some triggerevent hasn’t arrived before some amount of time has passed. If this approach is used, care must be taken to disable the timer if/when the event does come in. Its possible instead to use ontrigger as follows:

ontrigger coverme gotolabel coverleader 1 60.0 gotolabel leaderawol

This will implicitely set up a timer which will cause the script to jump to the leaderawol label after 60.0 seconds if the “coverme” event doesn’t arrive. Regardless of whether the coverme event arrives or the timer event occurs first, the trigger handler and timer will be disabled when this happens.

If the 2nd gotolabel/labelname are left out, these will default to the same value as the first gotolabel/labelname. So the following will give the same results:

ontrigger coverme gotolabel somelabel 0 60.0

ontrigger coverme gotolabel somelabel 0 60.0 gotolabel somelabel

Note that ontrigger timers are maintained separately from ontimer timers. If you do a

ontrigger coverme

both the ontrigger event and the associated timer will be disabled. You can currently only have up to 5 timers associated with ontrigger events.

Also, if you use something like

ontriggertimed alarmstart gotolabel handlealarm 0 60.0 gotolabel allisquiet

(clear=0) then this trigger handler will remain active after any “alarmstart” event arrives (with the timer reset to 60.0 seconds) so that subsequent “alarmstart” events can continue to be handled. Currently though, if the timelimit runs out before an alarmstart event arrives, then the “allisquiet” label will be used and the trigger will be disabled. If this becomes useful, we can probably add a parameter (cleart?) which will control whether running out of time clears the trigger or not.

Note that if ontrigger is used inside of a handlergroup (see handlergroup/handlergroupend) clear is implicitely set to 1 (when any event/timer/trigger comes in, all onevent/ontimer/ontrigger handlers in the same group are disabled).

If “interrupt” in place of “gotolabel”, the current line is saved, the script jumps to the given label, and proceeds until a “return” is reached. Then execution resumes at the saved label (causing the interrupted, latent command to be re-executed).

playsound

targetname sound [slot [volume [bNoOverride [radius [pitch]]]]]
playsoundwait

targetname sound [slot [volume [bNoOverride [radius [pitch]]]]]
Plays sound through actor with given name (self/npc supported).

e.g. playsound npc U2GraysonA.Marinevoices.RadioChatter_01 slot_talk

e.g. playsound npc U2GraysonA.Marinevoices.RadioChatter_01 slot_misc 3.0 0 1024.0 1.2

The optional slot, volume, bNoOverride, radius and pitch parameters map to the parameters of the same name used for Actor.uc PlaySound.

You can stop a sound from playing on the specified slot by using the sound “none” (no quotes).

The playsoundwait command is identical to the playsound command except that the script will wait for the sound to finish before continuing.

removeinventory
[inventorystring]
Removes the specified inventory item (or all inventory) from the controlled NPC’s inventory.

removeinventoryfromplayer
[inventorystring]

Removes the specified inventory item (or all inventory) from the player.

removeitemfromplayer
[inventorystring]

Removes the specified inventory item (or all inventory) from the player’s inventory.

removetosseditem
inventorystring
Removes specified item from NPC’s list of items to toss upon dying. No error if item wasn’t found.

resumepatrol

beginlabel endlabel hint
Scans gotoactor commands in script between beginlabel and endlabel and picks the “best” line to jump to. The hint parameter can be

best

best destination – one which will cause the NPC to backtrack the least

closesest

pick gotoactor which corresponds to the closest actor to the NPC’s location.

random

picks a random destination from the list

saved

pick gotoactor which corresponds to saved destination (see savedestination).

e.g.

:patrol1_begin

gotoactor pathnode23

gotoactor pathnode33

gotoactor pathnode12

gotolabel patrol1_begin

:patrol1_end

resumepatrol patrol1_begin patrol1_end closest

tells the NPC to pick up the gotoactor in the script code between the labels “patrol1_begin” and “patrol1_end” which is closest to the NPC’s current location.

resumepatrol patrol1_begin patrol1_end saved

will cause the same list to be checked, but the gotoactor which corresponds to the most recently saved destination (see savedestination) will be used instead of the closest.

Script execution immediately jumps to the selected line, so that the selected gotoactor line is executed and script execution continues as usual.

Note that currently, if a patrol is interrupted then resumed, the script code must take care to restore any settings that should be used for that patrol (e.g. restore the NPC’s stance). At some point we may be able to add support for pre-patrol sections which are always executed whenever a patrol resumes.

Also, when a patrol is interrupted, there is no need to return to that specific patrol – any section of code which is delineated by labels and contains 1 or more gotoactors can be used. Once support for returning to script control from autonomous mode is working, the autoend event can be used to specify a resumepatrol command which will put the NPC back on the most appropriate patrol.

return
Returns to the caller. It is an error if there is no current caller (no saved location). See also call and callend.

savedestination

Saves the most recent gotoactor destination for later use with resumepatrol (hint=saved).

sendevent

eventname triggerpawns

Triggers all actors in the level whose Tag matches eventname. If triggerpawns=1, will also trigger all NPCs in the level (regardless of what their tag is).

eventname (name)
Event to use/send.

triggerpawns (0|1)

Whether to trigger all NPCs or just actors with Tag=eventname.
e.g. “sendevent leaderarrived 1” will trigger all NPCs in the level with the “leaderarrived” event. If you use “sendevent leaderarrived 0”, only actors whose tags match “leaderarrived” will be triggered.

setactorrangetest
target distance
Sets up the target for the NPC to track and the tracking distance. When the given actor comes within the given distance, an ActorInRange event is sent to the NPC. When given target leaves the given distance, an ActorOutOfRange event is sent.

setaimodds

odds
Sets odds that NPC will hit target when firing under script control (normally in 0.0..1.0). If 0.0 is given, the NPC should never hit the target (will fire all around it), if 1.0 is given, the NPC will always hit the target. If odds < 0.0, uses the usual weapon firing odds which will depend on the game difficulty, and whether the target is moving etc. Defaults to 1.0 (always hit).

setalert

 0 | 1
Toggles whether the NPC is "alert" (uses alert animations).

setammo

ammostring amount [maxclip]

Makes sure NPC has specified amount (including none) of specified ammo in inventory, adding the ammo to the NPC’s inventory if necessary. If maxclip=1, makes sure the clip is as full as possible.

e.g.

setammo u2weapons.ammoinvheavyrockets 123 1

setammo u2weapons.ammoinvheavyrockets 9

See also addammo.

setfocus

[targetname]
Sets the NPC’s focus to the given actor. This can be used to have the NPC look in one direction while moving in another (normally, the NPC will look towards the move destination). Use with no parameter to clear the current focus (will default back to using the destination as the focus).

sethealth

health
Easier way to set NPC's health than using setproperty

setinventory

targetname inventoryname

Gives the given inventory item to the given target and makes that the target’s currently selected inventory (only applies to weapons currently). E.g.

setinventory player u2weapons.weaponinvpistol

setlocation

locationactorname [allowfail]
Moves the NPC to the location indicated by locationactorname. If the move fails (e.g. move actor doesn’t fit there), reports an error as long as allowfail=0 (default).

setlocation pathnode112
// teleports NPC to pathnode112

setlocationnamed
moveactorname locationactorname [allowfail]
Moves the actor indicated by moveactorname to the location indicated by locationactorname. If the move fails (e.g. move actor doesn’t fit there), reports an error as long as allowfail=0 (default).

setlocationnamed u2playersp0 pathnode112
// teleports player to pathnode112

setlocationvector
moveactorname X Y Z [error]
Moves the actor indicated by moveactorname to location X,Y,Z in the level. If the move fails (e.g. move actor doesn’t fit there, location is out of the level), its only an error if error=1.

setlocation pawn 123 456 789 1
// “teleports” NPC to 123,456,789, error if fails

setmovespeed

speed [stance]
Specifies that the NPC’s normal movement speed should be scaled by the given value. The best corresponding animation will be automatically used and animation rates are always velocity scaled to match the animation to the actual movement speed.

Use 1.0 to restore the default movement speed. Values are always clamped (forced) into the range 0.01..10.00.

By default, the movement speed for the current stance is affected. If the optional stance parameter is given (standing / crouching / prone / all), the given speed will apply to that stance or all stances if all given. Internally, 3 separate values are maintained for scaling the NPC’s movement speed while standing, crouching or prone.

This is mainly used to control the speed at which NPCs move (e.g. to force patrol vs walk vs jog vs run) but can also be used to vary speeds somewhat for NPCs.

setmovespeed x.x

+sets movement speed multiplier for current stance to x.x

setmovespeed x.x prone

+sets movement speed multiplier for prone stance to x.x

setmovespeed x.x all

+sets movement speed multiplier to x.x for all stances

setmovespeedauto
speed
Specifies movement speed that NPC should use after going autonomous (usually between 0.1 and 1.1 or so).

setorders

orders [ordesrobject [threshold [ordergiver]]]
Sets NPC’s orders to “orders” and (where applicable, the associated ordersobject to “ordersobject”. For some orders, threshold can be used to specify, e.g., how close the NPC needs to get to the applicable ordersobject. The ordergiver parameter isn’t used currently but would be used if/when NPCs support setting their own orders internally to determine the originator of the orders.

orders

ordersobject
threshold
description

attack*

n/a

n/a

go on the offensive

defend*

n/a

n/a

go on the defensive

dontmove*
target

n/a

NPC shouldn’t move (at all)

follow

target

yes

follow given ordersobject

freelance
n/a

n/a

NPC is free to determine its own orders

goto

destination
yes

NPC should move to ordersobject

hold*

n/a

yes

NPC should hold at/near its current position

none

n/a

n/a

clears NPC’s orders

point*

n/a

n/a

NPC has point

*not currently supported

Use “none” for cases where the ordersobject isn’t used but you need to specify a threshold or ordergiver.

Orders have no effect while an NPC is under script control. When autonomous, NPCs will try to carry out those orders.

If an NPC isn’t being threatened, the NPC will carry the orders out immediately (e.g. head to the location of the OrdersObject); if an NPC is being threatened he may deal with the threat first or he may “fallback” to the OrdersObject while shooting at the threat. This decision is made on a “squad” basis so that by default at leasts 50%+1 of a squad will try to carry out the orders (i.e. if there are 1/4/5 squad members, 1/2/3 of them will fallback to the orders destination). This threshold can be modified although this is a bit tricky because currently there is no "centralized" tracking of a squad. To do this use

 setproperty controller ExecuteOrdersThreshold 1.0

Make sure that you do this for every member of a squad or else the results will be somewhat random (because otherwise, the wrong threshold could be used some of the time resulting in unpredictable behavior).

setproperty

targetname propertyname propertyvalue
Sets given property in NPC to given value (use name=self to affect scripted NPC). The special value “default” can be used to specify that the default value for the target class should be used.

Note that you can even use setproperty to assign classes to properties (I think that pretty much anything that you could use in the default properties section in a .uc file should work). e.g.:

setproperty pawn assetshelperclass class'U2.AssetsHelperNoVocals'

Sets the Pawn’s AssetsHelperClass to a “no vocals” assets helper (so that the Pawn won’t make any vocal sounds himself, e.g., so scripts can control this).

And

setproperty pawn velocity (X=0,Y=0,Z=0)

sets the pawn’s velocity (all components) to 0.

setproperties

targetclass propertyname propertyvalue
Same as setproperty but looks for all actors matching the given class, e.g.

Setproperties u2.stationarypawnsets teamnumber 0
setscript

commandfile [startlabel]
Switches over to the given script file [starting at the given label]. When doing this the script controller is re-initialized so that any settings (events, state etc.) from the previous script are cleared.

setskill

skill
Sets NPC’s skill to the given value (0.0 .. 1.0).

setstance

standing | crouching | prone

latent

Sets the NPC’s “stance”. All animations will match the stance, e.g. when moving, walk/run/duckwalk/crawl will be used depending on the stance (and speed).

Note, if/when the script ends (is unloaded and the NPC becomes autonomous), the stance will be maintained as long as the NPC doesn’t move. Once the NPC moves, the physics and pathing code will necessarily take over the NPC’s stance. If “setstationary 1” was used, the NPC shouldn’t move unless he is moved via some momentum transfer and should maintain his stance. When moving the base AI will automatically use crouching and crawling to navigate as well in combat situations (e.g. when sniping).

Note: most stance changes result in an increase in the NPC’s collision radius or height and the new size may not fit in some cases. For example, if an NPC is crouching under a low area, it will not be able to stand up. Therefore this command must be used carefully – don’t try to change an NPC’s stance in situations where you aren’t sure whether this can fail or you will have no way of being sure of the resulting stance. A good rule of thumb is to only do stance changes at known and tested locations (e.g. specific pathnodes, keypoints) after doing a gotoactor to get to these locations.

We don’t currently use stance change animations (they’re available – they just aren’t hooked up yet) so most stance changes happen almost immediately, providing the stance change is possible. This command is latent because it waits for a brief period (0.1 seconds) before returning in order to allow the stance change to complete.

setstationary

0 | 1 [force]

Makes the NPC stationary (1) or mobile (0).

NPCs are mobile (can move towards enemies or other goals) by default. A stationary (immobile) NPC is unable to move from his current location, although if the NPC is knocked away from his “hold spot”, he will move back to it. This basically turns the NPC into a “turret”, covering a specific location in the level. The NPC will continue to be stationary even if the NPC “goes autonomous” and/or is released from script control.

The NPC’s stance prior to the call to setstationary is maintained and will be maintained even if the NPC “goes autonomous” and/or is released from script control.

If force=1, e.g.

setstationary 1 1

the NPC will always stay stationary, even if an enemy approaches within the NPC’s MinStationaryDistance or if the NPC’s health falls below the NPC’s MinStationaryHealth.

settacticalmovetype
type

Sets tactical move type to use during scripted movement (0: none 1: basic 2: serpentine).
setweapon

weaponname [1]
Makes sure that the NPC has the given weapon (with at least the default amount of ammo) and makes this the NPC’s current weapon. The weapon name needs to be fully qualified, e.g. U2Weapons.weaponInvRocketLauncher.

TBD:

Can specify “1” after the weapon name to force the NPC to use this weapon even if the usual weapon selection code would pick a different one.

The special weaponname “none” can be used to specify that the NPC should not be holding a weapon (use “none 1” to force this to continue).

The special weaponname “any” can be used to specify that the NPC should return to the usual behavior of picking the best available weapon based on the current situation and the AI Ratings for the available weapons. The optional “1” parameter has no effect if “any” is specified.

sleep

[delay]

latent

Puts the controller to sleep for the specified number of seconds (no script commands are processed). If no time is given, the controller is put to sleep “indefinitely”. The script controller wakes up when the time is up or when an incoming event which was associated with an onevent label occurs.

sleeprand

[x.x]

latent
Puts the controller to sleep for a random amount of time (in 0.001..x.x). See sleep command.

spawn

targetname itemstring [1 [filename [startlabel]]]

The NPC will spawn the given item at the given targetname’s location. An error is generated only if the item can’t be spawned and the optional “1” parameter is given.

spawn pawn u2decorations.barrel1
// spawn a barrel at the NPC’s pawn location

spawn player u2decorations.barrel1
1
// at the player’s location, error if fails

If the spawned actor is an NPC, it will be given the script specified by the optional filename parameter (if given) and the given startlabel will be used (also optional).

stop

Reenables all events and frees controlled Pawn from script control. The script is “given up” and the NPC can never return to it.

stopmovement
Stops the NPC.

testactorinrange

targetname distance [gotolabel/call label]

Tests whether the given target is within distance units from the NPC. The outcome depends on the results of the test and whether a destination label was given:

result

label given

no label given

true

call/goto label

execute next command

false

execute next command
skip next command

testproperty

targetname propertyname propertyvalue [gotolabel/call label]

If given property matches given value, next command is executed (or jumps to / calls given label if any).

Note: the testpropertyxx commands can use any valid actor name or one of the “special” names:

self
: to refer to the controller (e.g. to get at scratch variables)

npc
: to refer to the controlled NPC

player:
: to refer to the player (singleplayer)

The special value “default” can be used to specify that the default value for the target class should be used.

testpropertyci

targetname propertyname propertyvalue [gotolabel/call label]
Same as testproperty but does a case-insensitive compare.

testpropertye

targetname propertyname propertyvalue [gotolabel/call label]

testpropertyg

targetname propertyname propertyvalue [gotolabel/call label]

testpropertyge

targetname propertyname propertyvalue [gotolabel/call label]

testpropertyl

targetname propertyname propertyvalue [gotolabel/call label]
testpropertyle

targetname propertyname propertyvalue [gotolabel/call label]
If given test is true, next command is executed (or jumps to / calls given label if any).

testpropertye
: true if given property = given value

testpropertyg
: true if given property > given value

testpropertyge
: true if given property >= given value

testpropertyl
: true if given property < given value

testpropertyle
: true if given property <= given value

testrandom

x.x [gotolable/call label]
Generates random number in 0.0..1.0. If generated number is greater than or equal to x.x next command is executed (or jumps to / calls given label if any).

teststate

targetname statename[gotolable/call label]
If given target is in the given state, next command is executed (or jumps to / calls given label if any).

turntoactor

[targetname [LOS [Lock]]]

latent
Specifies an actor that the controlled NPC should turn to face.

Normally the NPC does not have to have line of sight (LOS) to the target actor. If there is no LOS then the NPC won’t turn. If LOS=1, then the NPC must have LOS to the target actor or the command will fail.

The NPC has LOS if there is no blocking geometry between it and the target actor. Blocking actors (other Pawns, decorations etc.) are not checked.

If LOS=2, the NPC will turn towards the target whether or not there is LOS to it.

If Lock=1, the specified target actor is locked and the NPC will continue to turn towards it

whenever the NPC is idle.

If this command is used to specify a trigger that should be shot, it is recommended that the trigger be triggered independently of the actual shot (e.g. about when the shot should be hitting it) in case the shot gets blocked.

e.g.

turntoactor barrel1 0

turns the NPC towards barrel1 if it is visible from the NPC.

turntoactor player 0 1

turns the NPC towards the player if it is visible from the NPC and the NPC will continue to turn towards the player, e.g. as the player moves around, as needed.

Can be used to specify an actor to aim at when using fire or firealt (these will wait until the NPC has rotated to the necessary direction).

Using turntoactor with no parameters clears any previously locked actor. When turntoactor was previously used with Lock=1, e.g. to fire at some target under script control, turntoactor should be used when the target actor is no longer needed.

use / unuse

targetname
NPC will attempt to use / unuse the named target. NPC should probably be fairly close to the target and facing it appropriately. Not sure if unuse is actually needed for any of the current actors (check with Aaron).

weaponload

Forces the NPC to load the current weapon.

weaponsetammotype
ammoname

Sets ammo type for current weapon to ammo matching ammoname if possible. Only applies to the grenade launcher currently.

e.g.

weaponsetammotype u2weapons.ammoinvgrenadesmoke

weaponsupportsaltfire
weaponname 0/1

weaponsupportsfire
weaponname 0/1

Disables/enables alt/primary fire for the controlled NPC when using the specified weapon (this can also be done by placing the Pawn in the editor then setting the U2AI DisabledFireWeapons/ DisabledAltFireWeapons properties). These should be set to the inventory name of the weapon to affect.

e.g.

weaponsupportsaltfire weaponinvrocketlauncher 0

disables NPC being able to alt-fire the rocket launcher

weaponsupportsfire weaponinvassaultrifle 1

enables NPC being able to (primary) fire the assault
rifle

Useful Properties

The following is a list of some of the properties which can be accessed through the setproperty command to modify NPC behavior (Update: this list is extrordinarily incomplete in that pretty much any modifiable property can be mucked with via setproperty):

Pawn Properties

Property

Values
Description

MaxFallSpeed

2000
Lets NPC use paths with long jumps (NPC could take damage)

LandHardVelocityStanding

1700
NPC will take damage above this speed

LandVeryHardVelocityStanding

2000
NPC will take much damage and “crouch” if applicable

LandFatalVelocityStanding

2600
NPC will die

Controller Properties

Player Properties

When Things Go Wrong

See AIStatus.doc for a list of known problems/issues (see also the list at the bottom of this document).

See AITesting.doc for an overview of debug/testing strategies (I’ll try to collapse the information into just that document eventually).

Note that if error reporting is enabled while a script error occurs, an error message will be logged and the controlled NPC’s texture is changed (e.g. red for an execution error, white for a load error) and the NPC will stop executing its script (assuming it was successfully loaded in the first place). To enable error messages / colors make sure you have

[U2.U2Pawn]

bDisableErrorColors=false

bDisableErrorMessages=false

in your user.ini file (this are set to true by default so that messages / colors do not show up in the shipped game). You also need to make sure that the debug text area is enabled (see UIScripts\UI.ui and make sure that the

Component=Console.MessageArea

line isn’t commented out.

Note that NPCs also turn blue when an internal pathing error occurs (green when an external pathing error occurs). To enable the error messages/error state

Other things that might go wrong include NPCs locking up (animation freezes and/or NPC stops moving appropriately).

#1 See if there are any in-game messages being displayed (make sure that you enable the message area in your ui.ini and you may want to set the max number of lines to something other than the default in console.ini).

#2 Use ViewClass U2NPC (or specify a more-derived class) to set your view to the NPC.

#3 If you know the name of the NPC (e.g. U2MarineLight3), type “TraceLock U2MarineLight3” at the console to enable the trace debugging information for that NPC (you can also use “TraceLock U2NPC” etc. to lock the nearest matching class if this is applicable, or just “TraceLock” if the NPC is currently under your crosshair).

#4 As an alternative to using TraceLock, enable playersonly, find the NPC (using ghost, gotoobject xxx may help), enable debug tracing (TraceToggle) and put the crosshair on the NPC in question. If the NPC is still moving around, you will probably want to use “TraceLock” so that you don’t have to hold him under your crosshair continuously.

The trace debug info shows you a lot of information, including:

· NPC’s collision size, Mesh, DrawScale

· NPC’s current state, location, health

· NPC’s weapon and weapin firing status

· NPC’s MoveTarget

· NPC’s current ScriptController type

· ScriptController’s state and current error message, if any

· Lots and lots of other stuff…

#5 Exit the game and look in the log file (search for “warn” or “U2ScriptWarning”).

Warning: Invalid Call or GotoLabel (destination label not found): call setupontrggers

ScriptLog: 0.000000 testscriptingt.U2MercJapMedium0.ScriptController0 U2ScriptWarning - error loading commands!

ScriptLog: File=..\\scripts\\test\\TestScriptingTa.u2s Command=InvalidCommand

ScriptLog: testscriptingt.U2MercJapMedium0 !CheckDestination -- Stop

ScriptLog: AssignScriptController -- using ScriptController: U2AI.ScriptControllerInterf File=N/A

#6 Enable additional debug info, either for the script processing (debugmode 1) or for the NPC itself (debugai 1 or debugaievents 1). This information should be shown both in-game and in the log file. You can modify

[U2AI.ScriptController]

bDebugMode=false

ErrorMessageFrequency=3.0

in Unreal.ini to control whether debugmode is initially enabled when the script starts up (this enables a “dump” of the “parsed” script code). and to control the frequency at which script error messages are broadcast (use 0.0 to disable these).

You can also enable debug mode in NPCs as soon as these are created, e.g. setting DebugFlags=0x30 for an NPC is equivalent to using debugai 1 and debugaievents – see U2 AI documents for more information.

Useful Exec Commands

For a complete
For a complete list of Unreal2’s exec commands see Unreal2Commands.doc.

ReloadScripts

Reloads the external script file for the named, hit or locked NPC and execution of the script restarts from the first command.

TraceLock

ck
See Unreal2Commands.doc – shows the current event controller type, and if this is a script controller, the current state, line number, sleep time remaining etc. along with a bunch of other useful info.

A number of commands toggle various in-game debug information for NPCs, e.g. ToggleDebugAI.

Miscellaneous

Dialog Support

Added support for "pause" nodes within a dialog tree.

While a scripted NPC is engaged in dialog, nodes can be optionally paused. This will be toggled in the dialog data with something like bPauseNPC and bUnPauseNPC (exact terminology tbd). This is a request that the NPC "pause" (stop moving, "generally" stop executing script commands) while executing that node. This should *greatly* simplify the kinds of scripts that are being used in Atlantis (possibly other levels also) as this makes it much simpler to have an NPC stop, engage in dialog, then resume his "patrol" without needing to have the script micro-manage the details. The hope is that this will make it much less likely that such scripts will break.

While an NPC is paused he stops moving and most latent u2s commands are "paused". Specifically,

 animloop/play/tween (if being handled latently)
 eventwait
 setstance
 sleep
 turntoactor
 weapon[alt]fire (if being handled latently)

will run to completion but the next command in the script won't be executed if the NPC is currently handling a paused dialog node.

 gotoactor will be implicitely "paused" because if the NPC isn't moving, the destination will never be reached. When the dialog ends or is unpaused, the NPC will generally resume moving to his previous destination (and the gotoactor command should eventually end as usual). See below for exceptions to this.

As always, scripts run until they reach a latent function so if/when a dialog node becomes paused, the script won't stop until it reaches a latent function. The NPC's movement will be stopped immediately if the NPC is executing a gotoactor (or is autonomous).

If the dialog node becomes unpaused, then script execution can resume (if it was paused in the first place -- otherwise latent functions etc. will complete as usual).

Even if the script is paused by the dialog, ontimer events will still occur (timers aren't stopped) and triggers which are associated with ontrigger handlers will continue to be handled. These will "wake up" the script and cause it to resume executing as is usually the case. In fact, apart from a paused dialog ending or being unpaused, the only way for a paused script to resume execution is through a timer handler or ontrigger handler.
Color Syntax Highlighting

If you are editing your script files in Developer Studio, you can cut and paste the contents of the following file into your UserType.dat file to enable syntax coloring for the AI scripting keywords. This file is usually located in something like “\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin” – the exact location will depend on your version of Developer studio and where this was installed.

UserType.dat
To have .uc and .u2s files use color syntax highlighting, you will also need to make sure that .these are set up as “C/C++” file types in your “HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\Text Editor\Tabs/Language Settings\C/C++” FileExtensions registry entry. The exact location will vary for different versions of Developer Studio. Use regedit to select this entry and add ;uc and ;u2s to the end of the default list which includes .c;.cpp;.rc files etc.

TBD Stuff
Future additions and known problems/issues:

· Support switching to another script, return returns to previous script if no labels pushed?

· Support picking up a .u2s file through pawnfactories (get pawnfactories working).

· Look into switching between scripted and autonomous behavior some more (e.g. on patrol, attack enemy, lose sight of enemy or enemy gets "out of range", go back to patrol).

· Orders support (this will probably take a while).

· Custom trigger support, e.g. trigger NPCs when X actors killed, or X actors are in some area etc. etc. (as needed).

· Command to keep an NPC "in step" (at about the same distance from) another NPC (for squads).

· Set focus (NPC should be able to move independently of focus with strafing where appropriate).

· Command to specify raw rotation (xxx units of yaw from current)?
· bNeverSwitchOnPickup: expose so NPCs won't switch weapons if run over pickup?

· Eventually, we will probably want a script command to force an NPC back to scripted mode.
Unplanned:

· Commands for specifying specifc anims for moving (don't really have alternative anims at this point).

· Assignments (e.g. Int1 = GetProperty npc Health).

· On-the-fly variable allocation.
3) There is no longer any need to script idle animations (afaik). This code can simply go away and this should reduce overhead somewhat. When an NPC is idle (scripted state but not moving anywhere), he will automatically breathe, look around and play misc idle animations. Also, I'll eventually improve the setstance stuff so that these kick in animations for changing between stances.

4) animloop/play/tween can now be thought of as overriding the default animations. Currently these tell the NPC AI to stop using its own animation code, e.g. so you can do "animplay duckwave". When you are done overriding animations, you can revert to the default idle animations by using the "animrelease" command. e.g. the following code snippet has an NPC go somewhere, duck, wave when he gets there then revert to the usual duck idle animations for 5 seconds:

5) Setting the AnimSequence in NPC properties should be avoided (afaik). e.g. use setstance to set the NPC's stance -- this will take care of the animation and make sure the collision cylinder and mesh alignment (for crawling) is set up. I suppose that at some point we may want to expose the initial stance as an editable property (and it would be nice if the animation was automatically updated in-editor to show this...).

gotoactor pathnode151
setstance crouching
animplay duckwave_Fr 0.0 0.0 1
animrelease
sleep 5.0

