Unreal II AI – Objectives

Overview

For a number of our singleplayer levels, we want some/all of the NPCs to have “objectives” apart from simply moving about and shooting enemies / getting shot. A typical example is obolus – the female mercs (angels) are attempting to reach a keypad in that level. If they reach it and have enough time at it to activate the associated door, the player loses the mission.

This is trivial if the angels will never see an enemy – they can be scripted to follow some path to the keypad and to interact with it when they get there (making sure that only one NPC at a time tries to access the keypad is a detail that is discussed below).

This is only slightly more complex if the angles have to deal with stationary enemies (e.g. XMP items that the player has placed). They’ll generally only acquire these “as needed” – when the NPC is about to try to move through a force field, for example. Turrets are pretty much attacked at all times currently, but if we wanted to put effort into this, the NPCs could be made a bit smarter about ignoring them if they aren’t a threat (e.g. if they’re facing away from the NPC’s current location and from where the NPC is headed). 

If/when the angels acquire an XMP-item enemy, they can go off of their script and return to it (if they survive) when they no longer have an enemy. At that point they should pick up the scripts previous “patrol” and carry on to the keypad. There are some issues with this (read on), but in general, this behavior works well and seems reasonable.

Things get trickier when the angels have to deal with player/NPC enemies (although some of these issues also apply to XMP items). If the angels were to quickly dispatch the enemy then return to their objective, this wouldn’t be so bad (of course, if the enemy is the player, dispatching him means the mission ends). But, this won’t happen much of the time – battles can be prolonged, especially if the NPCs are set up to be fairly defensive (e.g. make a lot of use of cover). 

In a nutshell, the NPCs need to have support for dealing with enemies while also trying to carry out their objectives. This is very similar to how UT CTF (grab flag, head back to base while shooting at enemy) or UT assault (e.g. fall back towards objective, facing and shooting at the enemy if visible and/or shooting objective if no enemy visible) work.

Technical Approach
Objectives Scripting
The AI scripts shouldn’t “micro-manage” objectives. The idea will be to have the scripts do nothing other than set the NPC’s objectives and (optionally) put them on a scripted path to the area of the objective. When autonomous (not under script control in order to deal with an immediate threat), the specified objective will be taken into account when determining the NPC’s destination/behavior.

When an NPC reaches the objective area an ObjectivesTrigger will be used to tell the NPC(s) that reach the trigger what to do next. The ObjectivesTrigger contains a primary script and a set of secondary scripts (initial implementation – could possibly want to extend this somewhat). The first NPC to touch the trigger gets the primary script (e.g. move over to keypad and activate it), subsequent NPCs receive one of the secondary scripts in order (e.g. stand by NPC with primary script and defend him, move to position X and provide cover, move to position Y and provide cover). If desired, NPCs under primary/secondary script control could be allowed to go autonomous (e.g. to engage an enemy) or not (e.g. to tell the primary NPC to remain focused on his objective in order to win the mission). As with any scripts, the NPCs can also be told to remain at their current position so that if they go autonomous they’ll remain at/near their defense area.

A key point is that the ObjectivesTrigger will maintain a list of all NPCs under its control. There may be some details to flesh out but the idea is that should an NPC that is under the control of an ObjectivesTrigger script be killed, the remaining NPCs are “promoted” in order so that the first secondary NPC becomes the primary NPC and the third secondary NPC becomes the first secondary NPC etc. (i.e., if, in the above-mentioned situation, the NPC operating the keypad is killed, the NPC that is beside him will start to operated it and the NPC at position X will come guard him while the NPC at position Y will move to position X). There may be some cases where NPCs can be “promoted” without changing their script (e.g. if there is no reason for the NPC at position Y to move to position X) and this can probably be flagged in the ObjectivesTrigger and, if an additional NPC hits the trigger, it could be given the move to position X script).

The script command to specify objectives will probably be “setorders goto xxx” (see U2AIScripting.doc for more information on setorders).

Objectives AI Support

How do we ensure that at least some NPCs try to get to the ObjectivesTrigger? This only really applies if/when an NPC acquires an enemy – if an NPC never sees an enemy the NPC’s script / orders will take him to the ObjectivesTrigger.

The idea is simple – if an NPC acquires an enemy, he will coordinate with his squad (at this point this just means any NPCs on the same team anywhere in the level) to make sure that (exact numbers tbd), no more than 50% of the squad is actively engaging that enemy and the rest of the squad will “passively” engage the enemy while carrying on with their objectives. If there is only 1 NPC left, he will always try to make it to the objectives.

NPCs which are actively carrying out their orders (all of them initially?) will have bOrdersEnabled =true. If an NPC encounters an enemy and decides to go after that enemy, the flag will be flipped to false until (if) there is no enemy.

The distinction between actively and passively engaging the enemy is in the metastates (behavior controller states) and behavior states (NPC states) which the NPC uses:


Active MetaStates

Passive MetaStates


AttackActive


AttackPassive


AttackActiveCantReach

AttackPassiveCantReach


AttacActiveEnemyNotVisible
AttackPassiveEnemyNotVisible


AttackActiveUseCover

AttackPassiveUseCover

For example, the AttackPassive metastate might generally use the AttackFallback state (to move towards the NPC’s objectives instead of the enemy) instead of the AttackClose state (close in on the enemy) and the AttackPassiveUseCover state might have shorter stakeouts and no attempt to recover the enemy.

Note that only some states (e.g. AttackFallback, AttackMoveToCoverCombat, Wandering) are “objectives” aware and will try to reach the objective location (tbd: and to avoid the enemy) – most states are designed to actively engage or locate an enemy (e.g. .AttackClose, AttackHunt, AttackTacticalMove).

Its possible there will be other differences such as having bOrdersEnabled=true NPCs not use specific states or use additional states that bOrdersEnabled=false NPCs normally use. Alternatively, the same states may be used but with a “skew” towards the Orders/OrderObject rather than the Enemy (e.g. use cover towards OrderObject instead of Enemy).

When a squad member is killed (tbd: or loses sight of an enemy), the orders are checked and possibly reshuffled so that the desired % of NPCs following vs ignoring their orders is maintained, possibly by preferring to keep the NPCs that are closest to the orderobject following their orders.

Known Issues

NPCs currently tend to be very defensive when using cover. In some levels this is fine, in other levels, e.g. obolus with its large, open areas, this tends to make the NPCs too passive. We’ll probably need to tweak the cover behavior so that NPCs tend to pick cover that is towards their enemy (or objective) rather than simply picking the closest cover (which is often back in the direction that the NPC came from before spotting an enemy). This needs to be done carefully though as (IMO), the current cover behavior is very solid in most of our levels. If necessary, this can probably be tweaked on a per-level basis, although ideally we’d come up with parameters that work well in all situations.

Currently NPCs “share” enemies so if one NPC starts to attack an XMP item, others will also attack it if they see their “alert” teammate. This may be OK, but there may be cases where we want NPCs to be smarter about not attacking XMP items, which aren’t affecting them.

Other

Note that NPCs which are using “goto xxx” to hit an ObjectivesTrigger should probably have their orders cleared once they hit the trigger and pick up a new script. Otherwise they will continue to try reaching the xxx destination. Also, don’t forget to consider whether the ObjectivesTrigger scripts need autobegin/end handlers to make sure that the NPCs continue to return to the primary/secondary script if they are allowed to go off of it (if applicable).

The Unreal2 level M06_Obolus is a good example of how to set up a typical scenario involving orders support and ObjectivesTriggers with primary and secondary scripts.

MDF

