
AI Testing Strategies

Debug Strategies

There are a number of tools/options available which can be very helpful when it comes to testing and/or tracking down problems.

First and foremost, see the TraceToggle stuff in Unreal2Commands.doc. This can show you all kind of information about the actor under the crosshair. In the case of scripted NPCs, if you have

[U2AI.ScriptController]

DebugMode=1

the trace info will include events that NPCs are waiting for, disabled events which can be useful for identifying scripting problems.

For bug reporting, a screenshot of an NPC with his trace debug info on-screen can be helpful, or this information can be directed into the log file with TraceToggleLog.

The following (also in unreal.ini) can be used to turn on various debug information (sent to the console and to the log file) for NPCs:

[Engine.LicenseePawn]

DebugFlags=0


// no debug info

DebugFlags=240


// all AI debug info

DebugFlags=7


// animation related debug info

DebugFlags=247


// AI and animation related debug info

The full set of “flags” (just add these together to combine them) are:







// hex
// decimal

const Debug_None


=
0x00;

// 0

const Debug_AnimPawn

=
0x01;

// 1

const Debug_AnimHandler

=
0x02;

// 2

const Debug_AnimTable

=
0x04;

// 3

const Debug_AI


=
0x10;

// 16

const Debug_AIEvents

=
0x20;

// 32

const Debug_AIWeapon

=
0x40;

// 64

const Debug_AIMovement

=
0x80;

// 128

You can also use 

[U2AI.ScriptController]

DebugMode=2 or 3

to enable debug mode for the scripting – commands will be echoed to the log file as they are executed.

And,

[Engine.Triggers]

DebugMode=1 or 3

turns on useful debug information for triggers as these send events (messages) to various NPCs/Actors in the level.

Make sure you have a text area set up for debug messages. The MessageArea line in ui.ini needs to be uncommented and you will probably want to limit the size of the message area to 4 lines in console.ini (I think). I believe these are the current defaults.

The above settings are global – they’ll affect all NPCs in the level. The debug flags for specific NPCs can be set on a case by case basis if desired either through a console command (see Unreal2Commands.doc – let me know if any info on this is missing) or through the NPC’s script, if it has one with:

debugaievents 1

// enable AI events debug messages

debugaiflags 240

// enable all AI debug messages

debugmode 3


// enable script controller’s debug messages

Also, NPCs which turn red have a scripting problem. An explanatory error message will be sent to the screen every 3 seconds (default) and the log file will contain information on what caused the problem (usually a syntax error or a problem with a gotoactor command).

NPCs which turn blue have an internal pathing problem. Again the log file should fully describe the problem including specifying where the NPC was trying to go and the nearest navigation point to the NPC’s current location.

General Scripting Stuff
 

General Testing Thoughts

NPCs should never be able to reach areas which aren’t pathed. If you can somehow lure an NPC to such an area (or if the NPC gets there on his own by randomly wandering), he will probably turn blue as soon as he tries to path his way out of that area. Problems like this should be noted and reported back to the LD. 

When invisible, NPCs should be completely unable to react to you (invisibility should only occur when testing anyway). If an NPC is chasing you and you go invisible, he should immediately “lose” you.

This is useful for testing the behavior of NPCs when they lose you, e.g. in many cases, scripted NPCs need to handle this situation correctly. Running around a level “flashing” NPCs (making yourself visible for a while then invisible) is a good way to test this.

Viewclass is a very valuable debug tool. You can ghost out of a level or turn yourself invisible so NPCs won’t see you then use “viewclass U2NPC” to cycle your viewpoint through the NPCs in the level. You can use “viewclass U2MercJapMedium” etc. to specify more specific NPCs. I’ve come across several problems by using viewclass with a single bot in a dm level, watching the bot roam around picking up inventory.

TraceLock xxx will lock the closest applicable actor. If xxx is an NPC name (e.g. U2MarineLight21), that NPC will be selected. If xxx is a class, the closest matching class will be selected.

Alt-F12 should toggle showing paths in-game and ToggleShowClass NavigationPoint will show you the navigation points in a level.

See Unreal2Commands.doc for other useful commands – there’s lots of good stuff there (.

Regression Tests

See the QA test plan as soon as this is available. We need to make sure that this includes a set of tests which will provide as complete coverage as possible for Unreal 2.

At this point, I’m guessing that this should include a level which contains an NPC which uses a script which exercises every script command for example.

In-Game Errors

To make errors as easy to spot as possible, the NPCs’s textures are changed to various colors when certain errors happen:


White
: script load/initialize error


Red
: script runtime error


Blue
: internal pathing error – NPC can’t get to its destination


Green
: external pathing error – NPC told to go somewhere invalid

Also, for script errors, an error message will be sent to the screen every 3 seconds (default) so that even if an errant NPC isn’t visible, his error messages should be. (I guess I should do something similar

for the blue/green pathing errors).

